3 resultados para CaMKII

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High frequency deep brain stimulation (DBS) of the lateral habenula (LHb) reduces symptoms of depression in severely treatment-resistant individuals. Despite the observed therapeutic effects, the molecular underpinnings of DBS are poorly understood. This study investigated the efficacy of high frequency LHb DBS (130Hz; 200μA; 90μs) in an animal model of tricyclic antidepressant resistance. Further, we reported DBS mediated changes in Ca(2+)/calmodulin-dependent protein kinase (CaMKIIα/β), glycogen synthase kinase 3 (GSK3α/β) and AMP-activated protein kinase (AMPK) both locally and in the infralimbic cortex (IL). Protein expressions were then correlated to immobility time during the forced swim test (FST). Antidepressant actions were quantified via FST. Treatment groups comprised of animals treated with adrenocorticotropic hormone alone (ACTH; 100μg/day, 14days, n=7), ACTH with active DBS (n=7), sham DBS (n=8), surgery only (n=8) or control (n=8). Active DBS significantly reduced immobility in ACTH-treated animals (p<0.05). For this group, western blot results demonstrated phosphorylation status of LHb CaMKIIα/β and GSK3α/β significantly correlated to immobility time in the FST. Concurrently, we observed phosphorylation status of CaMKIIα/β, GSK3α/β, and AMPK in the IL to be negatively correlated with antidepressant actions of DBS. These findings suggest that activity dependent phosphorylation of CaMKIIα/β, and GSK3α/β in the LHb together with the downregulation of CaMKIIα/β, GSK3α/β, and AMPK in the IL, contribute to the antidepressant actions of DBS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle adaptations to exercise confer many of the health benefits of physical activity and occur partly through alterations in skeletal muscle gene expression. The exact mechanisms mediating altered skeletal muscle gene expression in response to exercise are unknown. However, in recent years, chromatin remodelling through epigenetic histone modifications has emerged as a key regulatory mechanism controlling gene expression in general. The purpose of this study was to examine the effect of exercise on global histone modifications that mediate chromatin remodelling and transcriptional activation in human skeletal muscle in response to exercise. In addition, we sought to examine the signalling mechanisms regulating these processes. Following 60 min of cycling, global histone 3 acetylation at lysine 9 and 14, a modification associated with transcriptional initiation, was unchanged from basal levels, but was increased at lysine 36, a site associated with transcriptional elongation. We examined the regulation of the class IIa histone deacetylases (HDACs), which are enzymes that suppress histone acetylation and have been implicated in the adaptations to exercise. While we found no evidence of proteasomal degradation of the class IIa HDACs, we found that HDAC4 and 5 were exported from the nucleus during exercise, thereby removing their transcriptional repressive function. We also observed activation of the AMP-activated protein kinase (AMPK) and the calcium–calmodulin-dependent protein kinase II (CaMKII) in response to exercise, which are two kinases that induce phosphorylation-dependent class IIa HDAC nuclear export. These data delineate a signalling pathway that might mediate skeletal muscle adaptations in response to exercise.